
ARTICLES

Classical Variational Transition State Theory Study of Hydrogen Atom Diffusion Dynamics
in Imperfect Xenon Matrices

Ran Pan and Lionel M. Raff*
Department of Chemistry, Oklahoma State UniVersity, Stillwater, Oklahoma 74078

ReceiVed: July 23, 1996; In Final Form: NoVember 1, 1996X

Thermal diffusion rates of hydrogen atoms in imperfect face-centered-cubic (fcc) xenon lattices containing
up to 4.12% vacant sites have been computed using classical Monte Carlo variational transition state theory
with a pairwise Xe/H interaction potential obtained from the results ofab initio calculations at the MP4-
(SDTQ) level of theory. Convergence of the required integrals is achieved by combining importance sampling
and a damped trajectory procedure with the standard Markov walk. The variational flux through spherical
dividing surfaces is minimized as a function of radius of the dividing surface. The results show that the
presence of 1.4% vacant lattice sites lowers the diffusion barrier by about 0.006 eV relative to the perfect fcc
crystal system. The computed values of the hydrogen atom diffusion coefficients at 40 K indicate that, over
the range of vacancies considered, the diffusion coefficients increase exponentially with the percentage of
the lattice vacancies. The calculations also show that the lattice vacancies are mobile. The studies reveal
that the propensity for vacant site mobility increases as the total number of lattice vacancies increases. Since
this effect decreases the potential barrier to diffusion, the diffusion coefficients obtained from the variational
transition state theory calculation are lower limits for a system with the present interaction potential. The
calculated diffusion coefficients indicate that experimental matrices vapor-deposited at 10 and 28 K contain
about 1.8 and 1.2% vacant sites, respectively. Since the calculated diffusion rates are lower limits, these
percentages are upper limits for the potential surface used in the present investigation.

I. Introduction

In matrix isolation experiments, the low-temperature, con-
strained environment of the matrix cage serves to moderate fast
reactions that are typically characterized by low activation
energies. Example include rotational isomerizations, radical
recombination processes, and highly exothermic reactions. This
moderating effect increases the half-life and permits a variety
of experimental measurements to be made. Pimentel and co-
workers1,2 observed IR-induced rotational isomerization of
HONO in a nitrogen matrix at 20 K. Thermally activated
rotational interconversion has been observed for aldehyde-

ketene systems in Ar at 30 K3 and for cyclohexane,4 methanol,5

ethylene glycol,6 and haloethanols7,8 in inert, low-temperature
matrices. Most recently, Benderskii and Wight9 have reported
thermal rate measurements for rotational isomerization oftrans-
1,2-difluoroethane in Ar matrices between 30 and 36 K. This
process has also been investigated both experimentally10,11and
theoretically12-14 by Günthard and co-workers. The bimolecular
addition of F2 to ethylene is an example of a highly exothermic
process whose study is facilitated by the matrix environment.15-20

The conformational inversion ofcis-andtrans-HONO under
matrix-isolated conditions have been investigated in detail by
Agrawal et al.21,22 These investigations have shown that, in
addition to providing cage effects, the matrix environment playsX Abstract published inAdVance ACS Abstracts,January 1, 1997.
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a significant role in the reaction mechanism. It is found that
both thecis f trans and transf cis isomerization rates are
enhanced by the presence of the matrix in spite of the steric
effects produced by the environment. By comparison to gas-
phase data, Agrawalet al.21,22demonstrated that this enhance-
ment occurs because the matrix opens a (vibrationf lattice
phonon f rotation f torsional vibration) energy transfer
pathway. The intramolecular vibrational relaxation rates in the
matrix are found to be slow relative to the isomerization rates.
Hence, the dynamics are nonstatistical. The presence of lattice
vacancies is found to exert a profound influence upon the
dynamics. When the percentage of vacancies reaches 20%, the
calculated dynamics in the matrix approach the gas-phase results.
In the gas phase, deuterium and18O isotopic substitutions have
very little effect upon the rates.22 In the matrix, however, a
significant isotope effect is obtained which is attributed to a
reduced rate of energy transfer from the lattice to rotation of
DONO and H18ON18O due to the increased moment of inertia.
That is, isotopic substitution creates an energy transfer bottleneck
in the proposed (vibrationf lattice phononf rotation f
torsional vibration) mechanism.
Mobility and diffusion often play critical roles in reactions

occurring under matrix-isolation conditions. The importance
of these effects becomes obvious when the matrix is used as a
means for containing high-energy density materials. In spite
of this importance, only a few experimental and theoretical
studies of such processes have been reported. Feld, Kunttu,
and Apkarian23 have carried out measurements of fluorine atom
mobilities in an argon matrix subsequent to photodissociation
while Lawrence and Apkarian24 have measured the mobility of
photoexcited oxygen atoms in Xe lattices. Krueger and Weitz25

have reported measurements of oxygen atom recombination rates
in Xe matrices. LaBrake and Weitz26 have obtained data for
hydrogen atom diffusion in Xe matrices at 40 K. Misochkoet
al.27were able to demonstrate that direct UV photolysis of C2H4:
F2 complexes at 14 K forms 1,2-difluoroethane in doubly
substitutional sites, whereas the diffusion-limited reaction of
fluorine atoms with isolated C2H4 molecules at 25 K leads to
1,2-difluoroethane in singly substitutional sites. Theoretical
studies of atomic diffusion in rare-gas matrices have been
reported by Fordet al.28 for oxygen atoms diffusing in perfect
face-centered-cubic (fcc) xenon matrices between 32 and 80
K. Perryet al.29 have used classical variational transition state
theory to examine hydrogen atom diffusion and tunneling in
perfect fcc Xe matrices between 12 and 80 K. This system has
also been investigated by Guo and Thompson,30 who employed
simple transition-state theory with an empirical potential to
compute the hydrogen atom diffusion rates.
In all cases, the measured diffusion rates25,26exceed the values

computed for a perfect fcc rare-gas lattice28-30 by several orders
of magnitude. These differences have led to the suggestion that
the enhanced diffusion rates obtained in the experiments are
due to the presence of vacancies in the experimental matri-
ces.28,29 The presence of such vacancies is also suggested by
the experimental results reported by LaBrake and Weitz.26

These investigators found that hydrogen diffusion rates at 40
K were greater in Xe matrices vapor-deposited at 10 K than in
those deposited at 28 K and then warmed to 40 K. The
inference is that there exists a larger number of vacancies in
the lattice deposited at 10 K that are not annealed by warming
to 40 K. Clearly, the presence of lattice vacancies can play a
major role in the processes taking place within the matrix. The
rotational isomerization of HONO21,22 and the mechanism for
the F2:C2H4 matrix reaction20,31 as well as diffusion processes
are examples.

In the present paper, we report the results of a classical
variational transition state theory investigation of hydrogen atom
diffusion in imperfect xenon matrices that contain a varying
percentage of lattice vacancies. The results show that the
diffusion rate increases exponentially with percentage of lattice
vacancies so long as the percentage of vacancies is small. We
also find that lattice vacancies in this system are mobile and
that this effect serves to increase the atom diffusion rate.

II. Matrix Model and Computational Methods

The matrix model used in the present study is the (5× 5 ×
5) fcc lattice of 125 unit cells containing 666 lattice atoms
previously described by Raff.20 This model has been found to
be sufficiently large to accurately represent the density and
volume expansion upon trapping of 1,2-difluoroethane.20 In
order to represent bulk effects upon energy transfer that would
be present for an infinite lattice model, the velocity reset method
developed by Rileyet al.32 is employed. To do so, the 666
lattice atoms are first divided into three discrete zones. This
division is determined once the size of the lattice model has
been chosen using density, volume expansion, or other criteria.
The boundary zone (B zone) comprises the atoms located on
the boundary of the crystal. There are 302 such atoms in the
present case. The positions of these lattice atoms are fixed.
Their presence reduces edge effects and maintains the desired
lattice symmetry. The secondary zone (Q zone) contains the
302 lattice sites within one unit cell distance of the outer
boundary. The solution of Hamilton’s equations for the motion
of these atoms is modified by the reset functions associated with
each atom in the Q zone.32 This procedure maintains the
temperature of the lattice as energy is removed or inserted by
the chemical or physical processes that are occurring. The
primary zone (P zone) comprises the remaining atoms (62 in
the present case) of the crystal. The motions of these atoms
are affected only by the forces produced by the interaction
potential.
We simulate an imperfect lattice containingn vacancy sites

by starting with the perfect fcc lattice as described above.
Lattice vacancies are then created in the P and Q zones by
random removal ofn lattice atoms. The initial state is prepared
by placing the hydrogen atom at the most stable absorption site
within the innermost unit cell of the (5× 5× 5) matrix. Often
this position is at the geometric center of the cell. However,
because of the existence ofn vacancies in the crystal, the lattice
symmetry is destroyed. This may change the location of the
most stable absorption site.
The objective of the present study is to calculate the hydrogen

atom diffusion rate to an adjacent site, which, in a fixed fcc
matrix, would be located at the midpoint of an edge of the center
unit cell. Although the existence of vacancies introduces
deviations from the expected symmetry, it is assumed that such
deviations may be ignored in the computation of the jump
frequency between adsorption sites. That is, the diffusion
distance,d, between sites in the imperfect lattice is taken to be
identical to that for the perfect fcc crystal. Because the ratio
of hydrogen atoms to the number of adsorption sites is small,
the diffusion coefficient at temperatureT, D(T), can be related
to the jump frequency,k(T), by

wheref is the fraction of vacant sites (f ) 1 here) andR is the
dimensionally factor, which is three in the present case since
diffusion within the matrix is three-dimensional.
In classical variational transition-state theory, the jump

frequency is approximated by the flux,F(T), across a theoretical

D(T) ) [d2k(T)f]/R (1)
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dividing surface separating the two adsorption sites. If the
system behaves statistically, this flux must be an upper limit to
the actual diffusion rate since all diffusion events involve
crossing of the dividing surface, but not all crossings result in
diffusion. Consequently, we seek the dividing surface that
minimizes the flux. For a canonical system, the jump frequency
is proportional to the probability of the hydrogen atom being
on the dividing surface and to the velocity of the atom
perpendicular to that surface. Thus,F(T) can be expressed by
the sum of all such products averaged over the phase space of
the system divided by the total available phase-space volume.
This is,

where the delta function,δ(q- qi), is unity when on the dividing
surface and zero otherwise. In eq 2,E is the total system energy
and kb is the Boltzmann constant. The configuration space
integrals cover the space corresponding to reactant conforma-
tions. For the present system,E is given by

where pqi (q ) x, y, z) represents the momentum of the lattice
atom i in the q direction andVT is the total system potential
energy. The subscript runs over all lattice atoms except the
vacancy positions,k, and “H” denotes the hydrogen atom.
We have previously utilized spherical and cubical dividing

surfaces to minimizeF(T) and found that spherical surfaces
generally yield the lower flux.28 For both spherical and cubical
dividing surfaces, the integrations over momenta in eq 2 can
be done analytically. Such integration yields

where〈V〉 represents the average velocity of the hydrogen atom.
If the potential being employed is separable into a lattice

potential plus a hydrogen-lattice interaction, eq 4 may be
written in the form

where theVM andVI are the lattice potential and the hydrogen-
lattice interaction, respectively, and

The complexity of the potential precludes analytical evalu-
ation of eq 5. We therefore utilize Monte Carlo methods to
execute the required integrations. A Metropolis sampling
procedure is employed in which the dividing surface is replaced
with a dividing “slab” of width∆w. If ∆w is sufficiently small
that the integrand of eq 5 is constant across the width, eq 5
becomes

whereδ(∆w) is unity if a configuration point lies within the
dividing slab and zero otherwise. In principle, eq 7 may be
evaluated using a random set ofM points in the multidimen-
sional configuration space of the system. For such a randomly
selected set of points, the Monte Carlo approximant for eq 7 is

Although eq 8 yields the flux across the dividing slab, its
convergence rate will be extremely slow if totally random points
are selected for all atoms since virtually all points selected will
correspond to highly improbable configurations. The situation
may be improved by selecting the points from a Markov walk
weighted by the canonical distribution function exp[-VT/kT].
In this case, the flux will be given by

The convergence rate of eq 9 will be significantly greater than
that of eq 8. However, convergence will still be very slow due
to the infrequency of sampling in the regions of high potential.
A more satisfactory convergence rate may be obtained by using
a Markov walk weighted by the canonical distribution function
for the lattice alone, exp[-VM/kT]. For such a selection method,

F(T) ≈ 0.5[〈V〉/∆w]
∑
i

M

[exp(-VI/kbT)δ(∆w)] i

∑
i

M

[exp(-VI/kbT)] i

(10)

where a factor of 0.5 is included to correct for entries into the
dividing volume from the wrong direction. Equation (10) has
previously been used to compute silicon and hydrogen atom
diffusion rates on Si(111) and Si(111)-(7× 7) surfaces.33

The convergence rate by eq 10 is still very slow although it
can be used to obtain diffusion rates on surfaces and in matrices.
Typically, millions of Markov steps are required for surface
diffusion. For matrices at cryogenic temperatures, convergence
is even slower. A new method has been proposed by Fordet

F(T) )

∫p∫qexp(-E/kbT)|V(|δ(q- qc)∏
i)1
i*k

3N

dqi dpi

∫p∫qexp(-E/kbT)∏
i)1
i*k

3N

dqi dpi

(2)

E) ∑
i)1
i*k

N

[pxi
2 + pyi

2 + pzi
2]/2mi +

[pxH
2 + pyH

2 + pzH
2]/2mH + VT (3)

F(T) ) 〈V〉

∫qexp(-VT/kbT)δ(q- qc)∏
i)1
i*k

3N

dqi

∫qexp(-VT/kbT)∏
i)1
i*k

3N

dqi

(4)

F(T) ) 〈V〉

∫qexp(-VM/kbT) exp(-VI/kbT)δ(q- qc)∏
i)1
i*k

3N

dqi

∫qexp(-VM/kbT) exp(-VI/kbT)∏
i)1
i*k

3N

dqi

(5)

VT ) VI + VM (6)

F(T) )

[〈V〉/∆w]

∫qexp(-VM/kbT) exp(-VI/kbT)δ(∆w)∏
i)1
i*k

3N

dqi

∫qexp(-VM/kbT) exp(-VI/kbT)∏
i)1
i*k

3N

dqi

(7)

F(T) ) [〈V〉/∆w]
∑
i

M

[exp(-VM/kbT) exp(-VI/kbT)δ(∆w)] i

∑
i

M

[exp(-VM/kbT) exp(-VI/kbT)] i
(8)

F(T) ≈ [〈V〉/∆w]∑
i

M

[δ(∆w)] i (9)
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al.28 to circumvent this problem. The method is based on the
assumption that the major contribution toF(T) in eq 7 arises
from configurations in the neighborhood of the minimum-energy
pathway for the diffusion process. These configurations can
be conveniently located and sampled using a combination of
canonical Markov moves on the lattice atoms and totally random
moves on the embedded hydrogen atom followed by a series
of damped trajectory cycles in which the lattice is allowed to
relax toward its minimum-energy configuration in the field of
a stationary hydrogen atom.20,28,31 When this procedure was
employed, the Monte Carlo integrations were observed to
converge at a much greater rate since all of the sampling was
done in statistically important regions of configuration space
near the minimum-energy path.28

For spherical dividing surfaces, it is convenient to write eq 7
in the form

F(T) ≈ [〈c〉/∆w][∫qexp(-VM/kbT) ×
exp(-VI/kbT)δ(∆w)∏

i)1
i*k

3N

dqi rH
2 drH ×

sinθH dθH dφH]/[∫qexp(-VM/kbT) exp(-VI/kbT)∏
i)1
i*k

3N

dqi ×

rH
2 drH sinθH dθH dφH] (11)

where hydrogen atom coordinates are separated and expressed
in a spherical system. The Monte Carlo approximant for eq 11
is similar in form to eq 8. It is

where the terms under the summations are evaluated after every
Markov step on the lattice and after every damped trajectory
cycle. In eq 12,∆r is the width of the dividing spherical slab
andMH is the hydrogen atom mass. The factor of 2 corrects
for surface crossings in the wrong direction. The factor of 12
removes the degeneracy in the calculation which is present since
a spherical dividing surface counts jumps to 12 equivalent
diffusion sites. If the Markov walk is weighted by the canonical
distribution function for the lattice alone, the Monte Carlo
approximant for eq 11 becomes

In practice, the Markov walk is executed by moving m
randomly selected lattice atoms (7e me 20) and the hydrogen
atom in each step of the walk. The lattice atoms are moved
according to

whereqi
new andqi

old are the new and oldx, y, andz coordinates
of the lattice atomi, respectively, and∆q is the Markov step
size. Theêi are random numbers selected from a uniform
distribution on the interval [0.1]. For the hydrogen atom,

where

The values ofm and∆q are adjusted to produce a near-unit
ratio between accepted and rejected moves. In most cases,m
) 7 and∆q is 0.0866 Å for both the lattice atoms and hydrogen.
The width of the dividing slab,∆r, is chosen to be equal to the
maximum step size to ensure that the hydrogen atom cannot
traverse the dividing slab without entering its volume at least
once.
To increase convergence speed, subsequent to the Markov

step described above,K damped trajectory cycles are executed
holding the hydrogen atom stationary.20,28,31 In this procedure,
the kinetic energy of each lattice atom is set to zero, and the
classical Hamiltonian equations of the motion for the lattice
atoms are integrated until the total potential energy attains a
minimum. This is defined to be one trajectory cycle. Subse-
quent cycles are executed by repeating the above procedure
starting with the lattice configuration achieved in the previous
cycle. The use of this technique causes the Markov steps to be
taken in the near vicinity of the minimum-energy pathway which
significantly reduces the computational time required to achieve
convergence.
Since the system potential is independent of mass, the actual

execution of the above procedure can be greatly facilitated by
integrating the classical motion equations with the mass of all
atoms set to 1.0 amu. In addition, we may employ a very large
integration step size since we need not be concerned with the
conservation of energy. The use of these two techniques
significantly reduces the computational time required for
convergence.
A partial minimization ofF(T) is carried out by computing

the flux through a set of spherical dividing slabs with radii of
(R) 0.05jd) for j ) 1, 2, 3, ..., 20, whered is the total diffusion
distance measured from the initial adsorption site. After the
initial state is determined, the entire system is allowed to relax
to the nearest potential minimum using a set of 100 damped
trajectory cycles. The numerical evaluation of the flux begins
at this point. The variational transition-state theory method
assumes thatk(T) can be accurately replaced withFmin(T), where
Fmin(T) is the minimum flux obtained in the variational
adjustment of the dividing slab.

III. Potential Energy Surfaces

The potential surface is identical to that we have previously
employed to study hydrogen atom diffusion in perfect fcc Xe
matrices.29 The total potential for the hydrogen atom/matrix
system is assumed to be the separable sum given by eq 6. The
potential for the lattice interaction is

∆xH ) ∆Q sinθH cosφH (15)

∆yH ) ∆Q sinθH sinφH (16)

∆zH ) ∆Q cosφH (17)

θH ) cos-1[1 - 2êH1] (18)

θH ) 2πêH2 (19)

∆Q) ∆qêH3 (20)

F(T) ≈ [1/(2× 12× ∆r)](8kbT/πMH)
1/2×

∑
i

M

[exp(-VM/kbT) exp(-VI/kbT)rH
2δ(∆w)] i

∑
i

M

[exp(-VM/kbT) exp(-VI/kbT)rH
2] i

(12)

F(T) ≈ [2 × 12× ∆r]-1(8kbT/πMH)
1/2×

∑
i

M

[exp{-VI/kbT}rH
2δ(∆w)] i

∑
i

M

[exp{-VI/kbT}rH
2] i

(13)

qi
new) qi

old + êi∆q (i ) 1, 2, 3, ...,m) (14)
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whererij is the distance between lattice atomsi andj, andN is
the total number of the lattice atoms in the matrix model.k is
the index number of vacant sites in the crystal.Vij is taken to
be a Morse potential with a cutoff radius,rij ) Rc, given by

The intermolecular potential for the hydrogen-lattice interac-
tion is also assumed to have the pairwise form

whereriH is the distance between lattice atomi and the hydrogen
atom. TheViH term is taken to be a Lennard-Jones(12,6)
potential given by

The assumption of pairwise interactions is common in treating
substrate/matrix interactions. Howardet al.34 have shown that
the potential for the Ar+ Ar2 system in the gas phase may be
accurately represented by a pairwise sum. They found that the
inclusion of three-body triple dipole terms gave essentially the
same dynamical results. In addition, they found no significant
differences between the results obtained with simple Morse
potentials and those calculated using the more accurate Morse-
spline-van der Waals potential obtained from scattering data
reported by Parsonet al.35

Fraenkel and Haas36 have used Lennard-Jones pairwise
potentials to examine the trapping of SF6 in Ar and Xe matrices.
In these studies, SF6 was treated as a single particle. Guo and
Thompson30 used Lennard-Jones (12,6) potentials to investigate
atomic diffusion in Ar and Xe matrices. In their calculations,
the potential parameters were obtained from simple arithmetic
and geometric mean combining rules using data reported by
Allen and Tildesley37 and by Ashcroft and Mermin.38 This
procedure yields a Xe lattice constant of 6.325 Å, which is 0.085
Å greater than the measured value reported by Kane39 and 0.202
Å larger than the more recent result obtained by Mason and
Rice.40 For the Xe-H interaction, the combining rules predict
an equilibrium separation of 3.815 Å and a well depth of
0.003 85 eV.
In the present study, we have obtained the potential param-

eters for the Xe lattice required by eqs 21 and 22 from the
experimental scattering data reported by Barkeret al.41 The
use of these values in eq 22 has been shown20 to yield a Xe
lattice constant of 6.131 Å, in good agreement with the value
reported by Mason and Rice.40 The Xe heat of sublimation
computed from the 666-atom lattice model described above is
13.4% larger than the value reported by Kane.39

The potential parameters for the Xe-H interaction required
in eqs 23 and 24 were obtained by fitting the results ofab initio
calculations.29 A double-ú (DZ) basis set combined with the
pseudopotential for the xenon core developed by Wadt and
Hay42 was employed. The Xe-H equilibrium interatomic
distance and the potential well depth relative to the separated
atoms were computed at the Hartree-Fock (HF), and Mo¨ller-

Plesset second-order (MP2) and fourth-order (MP4) perturbation
theory levels using GAUSSIAN 92.43 The results show that
the Xe-H doublet is unbound at the HF level of theory. At
the MP2 level, it is very weakly bound with a well depth of
0.000 272 eV at an equilibrium Xe-H separation of 4.5903 Å.
At the equilibrium separation predicated by the MP2 calcula-
tions, MP4 calculations with all single, double, triple, and
quadruple excitations included predict a well depth of 0.000 189
eV. These latter results are the ones employed for the Xe-H
interactions in the present study. The potential parameters for
all interactions are given in Table 1.
The presentab initio calculations suggest that the use of

combining rules to obtain mixed interactions for atoms as
different as xenon and hydrogen may be a flawed procedure.
The equilibrium separation given by the MP2 calculations is
0.775 Å larger than that obtained by Guo and Thompson30 using
simple combining rules. The Xe-H well depth given by the
MP4 calculations is only 4.9% of that predicted by use of
combining rules.30 This type of result does not seem to be
dependent upon the data set employed with the combining
rules. We have previously obtained results44 very similar to
those reported by Guo and Thompson30 using combining rules
with pairwise data reported by Gundeet al.45 With this data
set, the calculated Xe-H equilibrium separation is 3.802 Å.
This result is in good accord with the value obtained by Guo
and Thompson,30 but it is 0.788 Å below the MP2ab initio
result. The calculated44 Xe-H well depth of 0.002 12 eV is
still much greater than that predicted by the MP4ab initio
calculations.
All of the above calculations are for gas-phase interactions.

As such, the effects of the matrix environment upon the
potentials are ignored. The level of accuracy of the pairwise
form of eqs 21-24 for matrix processes is unknown. As a
result, the extent to which our model corresponds to the
experimental systems is very uncertain. Our previous studies
of hydrogen atom diffusion in perfect fcc matrices29 suggest
that the calculated diffusion coefficients may not be too sensitive
to the actual choice of potential parameters. Diffusion coef-
ficients at 40 K calculated using theab initio potential described
above and the one obtained using combining rules with data
reported by Gundeet al.45 differed by only 9%.

IV. Results and Discussion

We have computed average hydrogen atom diffusion rates
at temperatures between 12 and 80 K in xenon matrices
containing 1.37 and 4.12% vacancies in the 364-atom P and Q
zones of the model lattice. This corresponds to 5 and 15
vacancy sites, respectively. These choices are arbitrary, but not
without reason. The lower percentage corresponds roughly to
the actual experimental lattices generated by vapor deposition
methods25,26 while the higher value allows us to examine the
expected behavior for an upper limit case.
The Markov walk/damped trajectory procedure described

above is found to converge at a rate much faster than normally

VM ) ∑
i)1
i*k

N

Vij(rij) (21)

Vij ) D[exp{-2R(rij - r0)} - 2 exp{-R(rij - r0)}]
for rij e Rc

Vij ) 0 for rij > Rc (22)

VI ) ∑
i)1
i*k

N

ViH(riH) (23)

ViH ) ε{(σ/riH)
12 - 2(σ/riH)

6} (24)

TABLE 1: Pairwise Potential Parameters

Xe-Xea
D 0.02421405 eV
R 1.4676000 Å-1

r0 4.36230 Å
Rc 7.000 Å

Xe-Hb

ε 0.000188 eV
σ 4.5903 Å
Rc 7.000 Å

a Taken from ref 20.b Taken from ref 29.
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seen in the calculation of diffusion rates using classical
variational transition-state theory methods.28,29 Convergence of
the diffusion rates for oxygen atoms in xenon matrices28 was
achieved in 5× 104 steps with the Markov/damped trajectory
procedure. In contrast, it was not possible to obtain convergence
with 106 steps by employing classical variational transition-state
methods with Markov moves alone. In the present calculations,
convergence is obtained with 0.75-2.0× 105 Markov/damped
trajectory steps.
Equation 6 predicts a significant potential barrier to the

diffusion of hydrogen atoms within the matrix cage. For the
case of a perfect fcc lattice with the atoms frozen in their
equilibrium positions, the barrier for straight-line diffusion of
hydrogen from one adsorption site to another is 2.855 eV. As
expected, the barrier crest occurs at a distanced/2 from the initial
adsorption site. This barrier increases asε and σ in eq 23
increase. Obviously, no diffusion will occur at cryogenic
temperatures with a barrier of this magnitude. However, when
the lattice is permitted to relax in the potential field of the
hydrogen atom and the phonon modes of the lattice are allowed
to contribute to the diffusion process, the barrier decreases to
0.121 eV.29

In the present case, dynamic barriers have been determined
by recording the minimum system potential for each of the
dividing slabs obtained from hydrogen-atom crossings observed
during the Markov/damped trajectory walk. Typical results are
shown in Figures 1 and 2. Figure 1 shows a typical barrier for
a system with 1.37% vacancies, and Figure 2 shows the
corresponding result for a lattice containing 4.12% vacancies.
With 1.37% vacancies, the relaxation of the lattice reduces the
energy barrier to 0.1146 eV, 0.0064 eV lower than that for the

no vacancy case. When the vacancy percentage reaches 4.12%,
the barrier shape shows a significant loss of symmetry. The
example seen in Figure 2 illustrates this point. In this case, the
dynamic barrier is reduced to 0.093 eV, 0.0216 eV below that
for the lattice with 1.37% vacancies. We see also that the barrier
crest shifts to about 1.2 Å. The fact that lattice vacancies lower
the dynamic barrier to diffusion indicates that such vacancies
will have a profound influence on the hydrogen atom diffusion
rates.
Hydrogen atom diffusion rates are computed using eqs 1 and

13 with a Markov walk/damped trajectory procedure. The
average hydrogen atom diffusion rates in Xe matrices with 1.37
and 4.12% vacancies are given in Table 2. In each case, the
results are obtained by averaging five different calculations each
with a different set of vacancy sites. At 40 K, the root-mean-
square deviation of the results from the mean corresponds to a
statistical uncertainty of(18%. The hydrogen atom diffusion
rate in a lattice with 1.37% vacancies is a factor of 26.6 faster
than that for the perfect fcc crystal, while the corresponding
diffusion barrier is 4.63% lower. The diffusion rate with 4.12%
vacancies is several orders of magnitude faster than that in the
perfect crystal, and the diffusion barrier is lowered 0.028 eV
relative to the perfect fcc lattice. Because of the small mass of
hydrogen, tunneling processes would be expected to make an
important contribution to diffusion at low temperatures. Perry
et al.29 found that, at temperatures approaching 12 K, diffusion
occurs almost exclusivelyVia tunneling. At 40 K and above,
however, tunneling was found to be negligible.
The decrease of the diffusion barrier with increasing vacancy

percentage suggests that the diffusion rate should vary expo-
nentially with vacancy percentage. Figure 3 shows a semilog
plot of the calculated hydrogen atom diffusion coefficients in a

Figure 1. Potential energy barrier for hydrogen atom diffusion in a
Xe matrix with 1.37% vacant sites. The plotted points are the minimum
crossing potentials obtained in the Markov/damped trajectory walk of
75 000 moves. The abscissa gives the radial diffusion distance covered.

Figure 2. Potential energy barrier for hydrogen atom diffusion in a
Xe matrix with 4.12% vacant sites. The plotted points are the minimum
crossing potentials obtained in the Markov/damped trajectory walk of
50 000 moves. The abscissa gives the radial diffusion distance covered.

TABLE 2: Classical Diffusion Rates for Hydrogen Atoms

T (K) % vacancies Ma Ebb (eV) Dc (cm2/s)

40 0.00d 75 000 0.1210 2.15× 10-15

40 1.37 75 000 0.1153 (5.71( 1.04)e× 10-14 e

12 4.12 75 000 3.06× 10-12

40 4.12 50 000 0.093 1.45× 10-10

80 4.12 40 000 3.97× 10-4

aNumber of moves in the Markov/damped trajectory walk.b Po-
tential barrier height.cClassical diffusion coefficients.dReference 29.
eOne sigma limit of statistical uncertainty in averaging over the lattice
vacancy sites.

Figure 3. Variation of the computed hydrogen atom diffusion
coefficient with percentage of vacant xenon sites at 40 K. The error
bars represent one sigma limit of statistical uncertainty in averaging
over the vacancies sites. The horizontal dashed lines are the experi-
mental values reported by LaBrake and Weitz in ref 26 for the matrices
indicated in the figure.
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xenon matrix as a function of the percentage of vacant sites in
the lattice. The near linearity of this plot indicates that the
dependence is well described as exponential. A least-squares
fit to the data yields

whereD andp are the diffusion coefficient and the vacancy
percentage, respectively. This exponential dependence will
obviously break down for increasingly large value ofp.
However, when the vacancy percentage is 5% or less, it appears
to be accurate. This increase in diffusion rate is a consequence
of a general lattice expansion produced by the vacancies. The
expanded lattice provides lower energy pathways for hydrogen
atom diffusion to adjoining sites. This expansion mechanism
is quite different from one that has the diffusion coefficient
increasing because of migration through large “holes” created
by the site vacancies.
LaBrake and Weitz26 have measured hydrogen atom diffusion

coefficients in vapor-deposited xenon matrices at 40 K. They
used 193 nm photolysis of HBr to produce hydrogen atoms
whose concentration was monitored using laser-induced emis-
sion from xenon-hydrogen exciplexes. When a xenon matrix
vapor deposited at 10 K, denoted Xe(10 K), was maintained at
10 K, the hydrogen-atom concentration remained unchanged
over a 5 day period. Thus, the diffusion coefficient at 10 K in
Xe(10 K) is effectively zero. When the temperature of the Xe-
(10 K) matrix is increased to 40 K, hydrogen diffusion is
observed with an estimated diffusion coefficient of 2.6× 10-13

cm2/s. In contrast, when a Xe(28 K) matrix is warmed to 40
K, a diffusion coefficient of 5.0× 10-14 cm2/s is obtained.
LaBrake and Weitz26 suggested that this difference is due to
the presence of a larger number of imperfections in the lattice
deposited at 10 K which are not later annealed at 40 K. This
view implicitly assumes that the larger number of vacancies
present in the Xe(10 K) lattice will lead to a larger hydrogen
atom diffusion coefficient.
The data given in Table 2 and in Figure 3 support the

interpretation advanced by LaBrake and Weitz.26 Equation 25
shows that the diffusion coefficient will indeed increase rapidly
with an increase in the number of vacant lattice sites. The
horizontal lines shown in Figure 3 are the measured diffusion
coefficients26 in Xe(10 K) and Xe(28 K) lattices. The intersec-
tion of these lines with the calculated curve indicates that there
are 1.76 and 1.15% vacancies in the experimental Xe(10 K)
and Xe(28 K) matrices, respectively.
It is important to note that the calculations show that the

vacancy sites are mobile. A typical example is shown in Figure
4 for the case of a xenon lattice at 40 K containing 1.37%
vacancies. The figure illustrates the mobility of one of these
vacancies, no. 382, during the initial 200 000 Markov steps.

As can be seen, five translations of this vacancy occur during
this period. These translations are induced by the hydrogen
atom diffusion which causes the lattice to shift toward a more
thermodynamically stable configuration.
The translation of site vacancies can significantly affect the

hydrogen-atom diffusion rate since the process alters the
potential barrier to diffusion. Figure 5 illustrates this point for
a Xe lattice with 1.37% vacant sites. Initially, the diffusion
barrier is that shown in Figure 1. After 200 000 Markov steps
have been executed, the variation of the system potential
between the initial and final absorption sites is that shown in
Figure 5. Obviously, the barrier to diffusion has completely
vanished. More detailed investigation demonstrates that this
drastic alteration of diffusion barrier is the result of vacancy
site mobility. Our studies show that the propensity for vacant
site mobility increases as the total number of vacancies increases.
Qualitatively, it is clear that vacant site mobility will increase

the hydrogen atom diffusion rate since the process lowers the
diffusion barrier. Since the canonical Markov walk and damped
trajectory calculations are thermodynamically based, we cannot
determine the time scale for vacant site mobility from the present
calculations. Consequently, it is not possible for us to quan-
titatively determine the effect of such mobility on the hydrogen
atom diffusion rates in imperfect xenon crystals. For this reason,
the diffusion coefficients listed in Table 2 should be regarded
as lower limits for a system whose potential is described by eq
6. For the same reason, the percentage of vacancies in the Xe-
(10 K) and Xe(28 K) experimental matrices26 predicted from
Figure 3 and eq 25 are upper limits.

V. Summary

Using a pairwise Xe/H interaction potential obtained from
the results of MP4(SDTQ) calculations, thermal diffusion rates
of hydrogen atoms in an imperfect face-centered-cubic xenon
lattice containingn vacancies have been computed using
classical variational transition-state theory. Convergence of the
required integrals is achieved by combining importance sampling
and a damped trajectory procedure with the standard Markov
walk. The variational flux through a spherical dividing surface
is minimized as a function of radius of the dividing surface.
The potential barriers to diffusion have been determined by

recording the minimum system potential observed upon hydro-
gen atom crossing on each of the dividing surfaces during the
damped trajectory/Markov walk. Typical results show that the
presence of 1.4% vacant lattice sites lowers the diffusion barrier
by about 0.006 eV relative to the perfect fcc crystal system.
The computed values of the hydrogen atom diffusion coef-

ficients at 40 K indicate that, over the range of vacancies

Figure 4. Typical lattice atom motion occurring during the first
200 000 Markov steps in the Monte Carlo calculation. At timet ) 0,
site 382 is vacant. The diffusion of the vacancy as shown by the solid
arrows produces a vacancy at site 77 so that the overall result is a
diffusion of the vacancy from site 382f site 539f site 47f site
545f site 77.

D(T)40 K)) 0.145× 10-15 exp[1.381p] cm2/s (25)

Figure 5. Example of the variation of the potential energy barrier for
hydrogen-atom diffusion in a Xe matrix with 1.37% vacant sites
subsequent to vacant site diffusion after 200 000 Markov/damped
trajectory steps. The plotted points are the minimum crossing potentials
obtained in the Markov/damped trajectory walk. The abscissa gives
the radial diffusion distance covered.
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considered, the diffusion coefficients increase exponentially with
the percentage of lattice vacancies. Comparison of the predicted
diffusion rates with the experimental values reported by LaBrake
and Weitz26 in vapor-deposited xenon matrices suggests that
the Xe lattices deposited at 10 and 28 K have about 1.8 and
1.2% vacant sites, respectively.
The calculations show that the lattice vacancies are mobile.

This translation of site vacancies can significantly affect the
hydrogen atom diffusion rate since the process lowers the
potential barrier to diffusion. Our studies show that the
propensity for vacant site mobility increases as the total number
of lattice vacancies increases. Although it is clear that vacant
site mobility will increase the hydrogen atom diffusion rate,
the present calculations do not permit the magnitude of this
increase to be determined. This is a consequence of the fact
that the canonical Markov walk and damped trajectory calcula-
tions are thermodynamically based. Therefore, we cannot
determine the time scale for vacant site mobility from the present
calculations. For this reason, the diffusion coefficients reported
here are lower limits for a system whose potential is described
by eq 6. For the same reason, the vacancy percentage predicted
for the experimental Xe(10 K) and Xe(28 K) matrices are upper
limits for the potential surface used in the present calculations.
The calculated hydrogen atom diffusion coefficients in Xe

at 40 K vary from 2.15× 10-15 cm2/s for a perfect lattice to
1.45× 10-10 cm2/s for a lattice containing 4.12% vacancies.
The statistical error present in these results is about(18%.
However, lack of knowledge of the true system potential makes
the accuracy of the computed coefficients very uncertain.
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