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Thermal diffusion rates of hydrogen atoms in imperfect face-centered-cubic (fcc) xenon lattices containing
up to 4.12% vacant sites have been computed using classical Monte Carlo variational transition state theory
with a pairwise Xe/H interaction potential obtained from the resultatoifnitio calculations at the MP4-
(SDTQ) level of theory. Convergence of the required integrals is achieved by combining importance sampling
and a damped trajectory procedure with the standard Markov walk. The variational flux through spherical
dividing surfaces is minimized as a function of radius of the dividing surface. The results show that the
presence of 1.4% vacant lattice sites lowers the diffusion barrier by about 0.006 eV relative to the perfect fcc
crystal system. The computed values of the hydrogen atom diffusion coefficients at 40 K indicate that, over
the range of vacancies considered, the diffusion coefficients increase exponentially with the percentage of
the lattice vacancies. The calculations also show that the lattice vacancies are mobile. The studies reveal
that the propensity for vacant site mobility increases as the total number of lattice vacancies increases. Since
this effect decreases the potential barrier to diffusion, the diffusion coefficients obtained from the variational
transition state theory calculation are lower limits for a system with the present interaction potential. The
calculated diffusion coefficients indicate that experimental matrices vapor-deposited at 10 and 28 K contain
about 1.8 and 1.2% vacant sites, respectively. Since the calculated diffusion rates are lower limits, these
percentages are upper limits for the potential surface used in the present investigation.

. Introduction ketene systems in Ar at 30%and for cyclohexanémethanof
ethylene glycof and haloethanol$ in inert, low-temperature
matrices. Most recently, Benderskii and Wighawve reported
hermal rate measurements for rotational isomerizatidraofs-
1,2-difluoroethane in Ar matrices between 30 and 36 K. This
process has also been investigated both experimelftilignd
theoretically>~14 by Ginthard and co-workers. The bimolecular

In matrix isolation experiments, the low-temperature, con-
strained environment of the matrix cage serves to moderate fas
reactions that are typically characterized by low activation
energies. Example include rotational isomerizations, radical
recombination processes, and highly exothermic reactions. This
moderating effect increases the half-life and permits a variety ” - ) .
of experimental measurements to be made. Pimentel and co-2ddition of F> to ethylene is an example of a highly exothermic
workerd2 observed IR-induced rotational isomerization of Process whose study is facilitated by the matrix environrfeff.
HONO in a nitrogen matrix at 20 K. Thermally activated The conformational inversion @is- andtransHONO under
rotational interconversion has been observed for aldehyde matrix-isolated conditions have been investigated in detail by
Agrawal et al?122 These investigations have shown that, in
€ Abstract published ilAdvance ACS Abstractdanuary 1, 1997. addition to providing cage effects, the matrix environment plays
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a significant role in the reaction mechanism. It is found that In the present paper, we report the results of a classical
both thecis — trans andtrans — cis isomerization rates are  variational transition state theory investigation of hydrogen atom
enhanced by the presence of the matrix in spite of the steric diffusion in imperfect xenon matrices that contain a varying
effects produced by the environment. By comparison to gas- percentage of lattice vacancies. The results show that the
phase data, Agrawat al2%-22demonstrated that this enhance- diffusion rate increases exponentially with percentage of lattice
ment occurs because the matrix opens a (vibratiomattice vacancies so long as the percentage of vacancies is small. We
phonon — rotation — torsional vibration) energy transfer also find that lattice vacancies in this system are mobile and
pathway. The intramolecular vibrational relaxation rates in the that this effect serves to increase the atom diffusion rate.
matrix are found to be slow relative to the isomerization rates.

Hence, the dynamics are nonstatistical. The presence of latticell. Matrix Model and Computational Methods

vacanc_ies is found to exert a profound influence upon the  The matrix model used in the present study is the«(5 x
dynamics. When the percentage of vacancies reaches 20%, th@) fcc Jattice of 125 unit cells containing 666 lattice atoms
calculated dynamics in th_e matrix a_ipproa_ch the g_as-_phase r95U|t5previously described by Ra#. This model has been found to
In the gas phase, deuterium a0 isotopic substitutions have  pe sufficiently large to accurately represent the density and
very little effect upon the rate. In the matrix, however, a  yolume expansion upon trapping of 1,2-difluoroeth&hen
significant isotope effect is obtained which is attributed to @ order to represent bulk effects upon energy transfer that would
reduced rate of energy transfer from the lattice to rotation of pe present for an infinite lattice model, the velocity reset method
DONO and H8ON!8O due to the increased moment of inertia. developed by Rileyet al?? is employed. To do so, the 666
Thatis, isotopic substitution creates an energy transfer bottleneckiattice atoms are first divided into three discrete zones. This
in the proposed (vibration lattice phonon— rotation — division is determined once the size of the lattice model has
torsional vibration) mechanism. been chosen using density, volume expansion, or other criteria.
Mobility and diffusion often play critical roles in reactions The boundary zone (B zone) comprises the atoms located on
occurring under matrix-isolation conditions. The importance the boundary of the crystal. There are 302 such atoms in the
of these effects becomes obvious when the matrix is used as gresent case. The positions of these lattice atoms are fixed.
means for containing high-energy density materials. In spite Their presence reduces edge effects and maintains the desired
of this importance, only a few experimental and theoretical lattice symmetry. The secondary zone (Q zone) contains the
studies of such processes have been reported. Feld, Kunttu302 lattice sites within one unit cell distance of the outer
and ApkariaR® have carried out measurements of fluorine atom boundary. The solution of Hamilton’s equations for the motion
mobilities in an argon matrix subsequent to photodissociation of these atoms is modified by the reset functions associated with
while Lawrence and Apkaridfhhave measured the mobility of each atom in the Q zor#. This procedure maintains the
photoexcited oxygen atoms in Xe lattices. Krueger and \ifeitz temperature of the lattice as energy is removed or inserted by
have reported measurements of oxygen atom recombination rateghe chemical or physical processes that are occurring. The
in Xe matrices. LaBrake and Weftfzhave obtained data for  primary zone (P zone) comprises the remaining atoms (62 in
hydrogen atom diffusion in Xe matrices at 40 K. Misocleto the present case) of the crystal. The motions of these atoms
al.2” were able to demonstrate that direct UV photolysis #1.£ are affected only by the forces produced by the interaction
F, complexes at 14 K forms 1,2-difluoroethane in doubly potential.
substitutional sites, whereas the diffusion-limited reaction of ~ We simulate an imperfect lattice containingzacancy sites
fluorine atoms with isolated £, molecules at 25 K leads to by starting with the perfect fcc lattice as described above.
1,2-difluoroethane in singly substitutional sites. Theoretical Lattice vacancies are then created in the P and Q zones by
studies of atomic diffusion in rare-gas matrices have been random removal of lattice atoms. The initial state is prepared
reported by Foraet al28 for oxygen atoms diffusing in perfect by placing the hydrogen atom at the most stable absorption site
face-centered-cubic (fcc) xenon matrices between 32 and 8owithin the innermost unit cell of the (& 5 x 5) matrix. Often
K. Perryet al2® have used classical variational transition state this position is at the geometric center of the cell. However,
theory to examine hydrogen atom diffusion and tunneling in because of the existencerfacancies in the crystal, the lattice
perfect fcc Xe matrices between 12 and 80 K. This system hasSymmetry is destroyed. This may change the location of the
also been investigated by Guo and Thomp¥bmho employed ~ Most stable absorption site.

simple transition-state theory with an empirical potential to ~ The objective of the present study is to calculate the hydrogen

compute the hydrogen atom diffusion rates. atom diffusion rate to an adjacent site, which, in a fixed fcc
In all cases, the measured diffusion rat@8exceed the values m‘%”'xv would be located at th_e midpoint of an ed_ge O.f the center
unit cell. Although the existence of vacancies introduces

computed for a perfect fcc rare-gas latffce® by several orders iations f h q L dth h
of magnitude. These differences have led to the suggestion thapev!at!ons rom the expected symmetry, itis assumed that suc
deviations may be ignored in the computation of the jump

the enhanced diffusion rates obtained in the experiments aref bet d i it That is. the diffusi
due to the presence of vacancies in the experimental matri- requency between adsorption Sites. at 1s, the dirusion

ces?29 The presence of such vacancies is also suggested by_dlstanced, between sites in the imperfect lattice is taken to be

the experimental results reported by LaBrake and WSéitz. |dfer:1t|é:al to that for thehperfectbfcc cfrysci[al. Becaqse the rat'ﬁ
These investigators found that hydrogen diffusion rates at 40 :)he zi/if;l(jgiig iﬁgpf?citgni a?t tneur;n eer:at?ma E)s(%pt(;(;r;] ‘:’)'éefe:ztzzna ’
K were greater in Xe matrices vapor-deposited at 10 K than in o the | f b P ¢ ’

those deposited at 28 K and then warmed to 40 K. The 0 the jump frequencyk(T), by

inference is that there exists a larger number of vacancies in [ 2

the lattice deposited at 10 K that are not annealed by warming D(T) = [d k(M (@)

to 40 K. Clearly, the presence of lattice vacancies can play a wheref is the fraction of vacant site$ £ 1 here) andx is the
major role in the processes taking place within the matrix. The dimensionally factor, which is three in the present case since
rotational isomerization of HON®?2?and the mechanism for  diffusion within the matrix is three-dimensional.

the F:C,H4 matrix reactiof®3t as well as diffusion processes In classical variational transition-state theory, the jump
are examples. frequency is approximated by the flux(T), across a theoretical
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dividing surface separating the two adsorption sites. If the V=V, +V, (6)
system behaves statistically, this flux must be an upper limit to

the actual diffusion rate since all diffusion events involve The complexity of the potential precludes analytical evalu-
crossing of the dividing surface, but not all crossings result in ation of eq 5. We therefore utilize Monte Carlo methods to
diffusion. Consequently, we seek the dividing surface that execute the required integrations. A Metropolis sampling
minimizes the flux. For a canonical system, the jump frequency procedure is employed in which the dividing surface is replaced
is proportional to the probability of the hydrogen atom being with a dividing “slab” of widthAw. If Aw is sufficiently small

on the dividing surface and to the velocity of the atom that the integrand of eq 5 is constant across the width, eq 5
perpendicular to that surface. ThU&T) can be expressed by becomes

the sum of all such products averaged over the phase space of

the system divided by the total available phase-space volume.F(T) =

This is, SN
o flep(_VM/ ko) exp(=Vi/k, T)o(AW) [ | doy
=
A — i=k
J,JoexpElkDIV.I0(g %] dp (GIAW] "~
i=k
F(T) = ~ o) S EXpEVkT) exp(-Vi/k, D[] da
=
S expEk D[] dai dp =
ik where 6(Aw) is unity if a configuration point lies within the

] o o dividing slab and zero otherwise. In principle, eq 7 may be
where the delta functiom(q — ), is unity when on the dividing  evaluated using a random set Mf points in the multidimen-
surface and zero otherwise. In ed=s the total system energy  sjonal configuration space of the system. For such a randomly

and k, is the Boltzmann constant. The configuration space selected set of points, the Monte Carlo approximant for eq 7 is
integrals cover the space corresponding to reactant conforma-

tions. For the present systels,is given by

M
X 3 [exp(—Vyy/k,T) exp(-Vi/k,TIo(AW)],
E= Y Ip2 +pi+ plizm + F(T) = [GTAW] —

i=k Z[eXp(_VM/ka) exp(=Vi/k,T];
[P’ + pyH2 + pyli2my + Vr (3) ' (8)

where pi (9 = X, Y, 2) represents the momentum of the lattice Although eq 8 yields the flux across the dividing slab, its
atomi in the g direction andVr is the total system potential  convergence rate will be extremely slow if totally random points
energy. The subscript runs over all lattice atoms except the are selected for all atoms since virtually all points selected will
vacancy positionsk, and “H” denotes the hydrogen atom. correspond to highly improbable configurations. The situation
We have previously utilized spherical and cubical dividing may be improved by selecting the points from a Markov walk
surfaces to minimizeé=(T) and found that spherical surfaces weighted by the canonical distribution function exj:/kT].
generally yield the lower flu¥® For both spherical and cubical  |n this case, the flux will be given by
dividing surfaces, the integrations over momenta in eq 2 can
be done analytically. Such integration yields M
F(T) ~ [UAW] Z[é(AW)]i 9)
3N ,
exp(—V-;/k,T)o(q — dg
fq PEVilko DO qc).: % The convergence rate of eq 9 will be significantly greater than

F(T) = B0 i=k ) that of eq 8. However, convergence will still be very slow due
- aN to the infrequency of sampling in the regions of high potential.
feXp(_VT/ka) dg A more satisfactory convergence rate may be obtained by using
q 3 a Markov walk weighted by the canonical distribution function
i=k for the lattice alone, expfVu/kT]. For such a selection method,
where@[Tepresents the average velocity of the hydrogen atom. M
If the potential being employed is separable into a lattice Z[exp(—V,/ka)cS(Aw)]i
potential plus a hydrogerlattice interaction, eq 4 may be N T
written in the form F(T) ~ 0.5[[2[AW] v (10)
3N z[eXp(_V/ kDI
LeXp(_VM/ka) exp(-Vi/k,T)o(q — )| |da; . l o
= where a factor of 0.5 is included to correct for entries into the
F(T) = B0 =k dividing volume from the wrong direction. Equation (10) has
3N previously been used to compute silicon and hydrogen atom
feXp(_VM/kJ) exp(V,/k,T)[dg diffusion rates on Si(111) and Si(111)-¢7 7) surfaces3
a = The convergence rate by eq 10 is still very slow although it
=k (5) can be used to obtain diffusion rates on surfaces and in matrices.

Typically, millions of Markov steps are required for surface
where theVy andV, are the lattice potential and the hydrogen  diffusion. For matrices at cryogenic temperatures, convergence
lattice interaction, respectively, and is even slower. A new method has been proposed by ord
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al.?8 to circumvent this problem. The method is based on the whereq™" ando®™ are the new and olg, y, andz coordinates
assumption that the major contribution EgT) in eq 7 arises  of the lattice atori, respectively, and\q is the Markov step
from configurations in the neighborhood of the minimum-energy size. The&; are random numbers selected from a uniform
pathway for the diffusion process. These configurations can distribution on the interval [0.1]. For the hydrogen atom,

be conveniently located and sampled using a combination of

canonical Markov moves on the lattice atoms and totally random Ax, = AQ sin 8, cosgy, (15)
moves on the embedded hydrogen atom followed by a series

of damped trajectory cycles in which the lattice is allowed to Ay, = AQsinf, sing, (16)
relax toward its minimum-energy configuration in the field of

a stationary hydrogen atoff2831 When this procedure was Az, = AQ cos¢,, (17)

employed, the Monte Carlo integrations were observed to
converge at a much greater rate since all of the sampling wasyhere
done in statistically important regions of configuration space

near the minimum-energy path. 6,, = cos '[1 — 2&,,]] (18)
For spherical dividing surfaces, it is convenient to write eq 7
in the form 0, = 27, (19)
F(T) ~ (AW . exp(-Vi/ kb-;)\l X AQ = AGE, (20)
exp(-V /k,T)o(Aw) [ dg, ry? dryy x The values ofm and Aq are adjusted to produce a near-unit
o ratio between accepted and rejected moves. In most cases,
aN =7 andAq s 0.0866 A for both the lattice atoms and hydrogen.
SinB. do. do Ul [exp=V./ exp(=V,/ da The width of the dividing slabAr, is chosen to be equal to the
n 00y A [L PEVkeT) expCV) kb-Dlz G x maximum step size to ensure that the hydrogen atom cannot
i=k traverse the dividing slab without entering its volume at least

ry’dr,sin6,, do, dp,] (11)  once.
To increase convergence speed, subsequent to the Markov

where hydrogen atom coordinates are separated and expressegs, described abovk, damped trajectory cycles are executed
in a spherical system. The Monte Carlo approximant for eq 11 holding the hydrogen atom station@&283! In this procedure,

is similar in form to eq 8. Itis the kinetic energy of each lattice atom is set to zero, and the
1o classical Hamiltonian equations of the motion for the lattice
F(T) ~ [1/(2 x 12 x Ar)](8k,T/zM)™* x atoms are integrated until the total potential energy attains a
M minimum. This is defined to be one trajectory cycle. Subse-
Z[exp(—VM/ka) exp(—V,/kb'Deré(AW)]i quent cycles are executed by repeating the above procedure
T starting with the lattice configuration achieved in the previous
M (12) cycle. The use of this technique causes the Markov steps to be
_ - 2 taken in the near vicinity of the minimum-energy pathway which
Z[exp( VilkoT) expCVilkeTry T significantly reduces the computational time required to achieve
convergence.

where the terms under the summations are evaluated after every Since the system potential is independent of mass, the actual
Markov step on the lattice and after every damped trajectory €x€cution of the above procedure can be greatly facilitated by
cycle. In eq 12Ar is the width of the dividing spherical slab ~ integrating the classical motion equations with the mass of all
andMy is the hydrogen atom mass. The factor of 2 corrects &0ms setto 1.0 amu. In addition, we may employ a very large
for surface crossings in the wrong direction. The factor of 12 integration step size since we need not be concerned with the
removes the degeneracy in the calculation which is present sinceconservation of energy. The use of these two techniques
a spherical dividing surface counts jumps to 12 equivalent significantly reduces the computational time required for
diffusion sites. If the Markov walk is weighted by the canonical Convergence.

distribution function for the lattice alone, the Monte Carlo A partial minimization off~(T) is carried out by computing
approximant for eq 11 becomes the flux through a set of spherical dividing slabs with radii of

(R=10.05d) forj=1, 2, 3, ..., 20, wherd is the total diffusion
distance measured from the initial adsorption site. After the
initial state is determined, the entire system is allowed to relax

F(T) ~ [2 x 12 x Ar] Y(8k,T/aM,)"? x

M to the nearest potential minimum using a set of 100 damped

Z[exp{ _Vllkbnera(AW)]i trajectory cycles. The numerical evaluation of the flux begins

' (13) at this point. The variational transition-state theory method
M assumes th&(T) can be accurately replaced wkh,n(T), where
Z[exp{—vllkb'l'}er]i Fmin(T) is the minimum flux obtained in the variational

| adjustment of the dividing slab.

In practice, the Markov walk is executed by moving m Ill. Potential Energy Surfaces
randomly selected lattice atoms £7/m < 20) and the hydrogen
atom in each step of the walk. The lattice atoms are moved
according to

The potential surface is identical to that we have previously
employed to study hydrogen atom diffusion in perfect fcc Xe
matrices?® The total potential for the hydrogen atom/matrix
new  _old . system is assumed to be the separable sum given by eq 6. The
g =0d +t&§Aq (1=1,23,..m (14) potential for the lattice interaction is
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N
Vu = ) Vi(ry)

(21)
i=k

whererj; is the distance between lattice atoiendj, andN is
the total number of the lattice atoms in the matrix modeis
the index number of vacant sites in the crystsf; is taken to
be a Morse potential with a cutoff radiug, = R;, given by

V;j = Dlexp{ —2a(rj — ro)} — 2 exd —a(ryj — ro)}]
forr; <

V; =0 forry > R, (22)
The intermolecular potential for the hydrogéattice interac-
tion is also assumed to have the pairwise form

N
Vi = ZViH(riH) (23)

i=k

wherer;y is the distance between lattice atoand the hydrogen
atom. TheViy term is taken to be a Lennardones(12,6)
potential given by
Viy = el (01ryp) ™ — 2(0lri )% (24)
The assumption of pairwise interactions is common in treating
substrate/matrix interactions. Howagtlal3* have shown that
the potential for the Ar- Ar, system in the gas phase may be

accurately represented by a pairwise sum. They found that the

inclusion of three-body triple dipole terms gave essentially the
same dynamical results. In addition, they found no significant

differences between the results obtained with simple Morse

potentials and those calculated using the more accurate Morse
spline-van der Waals potential obtained from scattering data
reported by Parsost al3°

Fraenkel and Had% have used Lennard-Jones pairwise
potentials to examine the trapping of S Ar and Xe matrices.
In these studies, Shvas treated as a single particle. Guo and

ThompsoR® used Lennard-Jones (12,6) potentials to investigate

atomic diffusion in Ar and Xe matrices. In their calculations,

the potential parameters were obtained from simple arithmetic . ) o
ypoten'uals are ignored. The level of accuracy of the pairwise

and geometric mean combining rules using data reported b
Allen and Tildesley” and by Ashcroft and Mermif8 This
procedure yields a Xe lattice constant of 6.325 A, which is 0.085
A greater than the measured value reported by Rared 0.202

A larger than the more recent result obtained by Mason an
Rice?0 For the Xe-H interaction, the combining rules predict
an equilibrium separation of 3.815 A and a well depth of
0.003 85 eV.

In the present study, we have obtained the potential param-

eters for the Xe lattice required by egs 21 and 22 from the
experimental scattering data reported by Barkeal*! The
use of these values in eq 22 has been sRBwmyield a Xe
lattice constant of 6.131 A, in good agreement with the value
reported by Mason and Ri¢8. The Xe heat of sublimation
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TABLE 1: Pairwise Potential Parameters

Xe—Xe?
D 0.02421405 eV
o 1.4676000 A?
ro 4.36230 A
R 7.000 A
Xe—HP
€ 0.000188 eV
o 45903 A
Re 7.000 A

aTaken from ref 20° Taken from ref 29.

Plesset second-order (MP2) and fourth-order (MP4) perturbation
theory levels using GAUSSIAN 92. The results show that
the Xe—H doublet is unbound at the HF level of theory. At
the MP2 level, it is very weakly bound with a well depth of
0.000 272 eV at an equilibrium X%eH separation of 4.5903 A.

At the equilibrium separation predicated by the MP2 calcula-
tions, MP4 calculations with all single, double, triple, and
quadruple excitations included predict a well depth of 0.000 189
eV. These latter results are the ones employed for thetEXe
interactions in the present study. The potential parameters for
all interactions are given in Table 1.

The presentab initio calculations suggest that the use of
combining rules to obtain mixed interactions for atoms as
different as xenon and hydrogen may be a flawed procedure.
The equilibrium separation given by the MP2 calculations is
0.775 A larger than that obtained by Guo and Thom@fsosing
simple combining rules. The XeH well depth given by the
MP4 calculations is only 4.9% of that predicted by use of
combining rules$® This type of result does not seem to be
dependent upon the data set employed with the combining
rules. We have previously obtained restfitgery similar to
those reported by Guo and Thomp&busing combining rules
with pairwise data reported by Guné¢ al*> With this data
set, the calculated %eH equilibrium separation is 3.802 A.
This result is in good accord with the value obtained by Guo
and Thompsor? but it is 0.788 A below the MP2b initio
result. The calculatéd Xe—H well depth of 0.002 12 eV is
still much greater than that predicted by the MB# initio
calculations.

All of the above calculations are for gas-phase interactions.
As such, the effects of the matrix environment upon the

form of eqs 2124 for matrix processes is unknown. As a
result, the extent to which our model corresponds to the
experimental systems is very uncertain. Our previous studies

g of hydrogen atom diffusion in perfect fcc matriéésuggest

that the calculated diffusion coefficients may not be too sensitive
to the actual choice of potential parameters. Diffusion coef-
ficients at 40 K calculated using tlab initio potential described
above and the one obtained using combining rules with data
reported by Gundet al*® differed by only 9%.

IV. Results and Discussion

We have computed average hydrogen atom diffusion rates
at temperatures between 12 and 80 K in xenon matrices

computed from the 666-atom lattice model described above is containing 1.37 and 4.12% vacancies in the 364-atom P and Q

13.4% larger than the value reported by Kahe.

The potential parameters for the Xgl interaction required
in eqs 23 and 24 were obtained by fitting the resultatfnitio
calculation®® A double< (DZ) basis set combined with the

zones of the model lattice. This corresponds to 5 and 15

vacancy sites, respectively. These choices are arbitrary, but not
without reason. The lower percentage corresponds roughly to
the actual experimental lattices generated by vapor deposition

pseudopotential for the xenon core developed by Wadt and method3>26 while the higher value allows us to examine the

Hay*2 was employed. The XeH equilibrium interatomic

expected behavior for an upper limit case.

distance and the potential well depth relative to the separated The Markov walk/damped trajectory procedure described

atoms were computed at the Hartrdeock (HF), and Mder—

above is found to converge at a rate much faster than normally
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0.12 TABLE 2: Classical Diffusion Rates for Hydrogen Atoms
Eb=0.1146 eV
0.101 T(K) 9% vacancies Ma Ex? (eV) D¢ (cné/s)
> 40 0.00 75000 0.1210  2.15 107'S
— 0.08] 40 1.37 75000 0.1153 (5.7t 1.04F x 1074¢
= 12 4.12 75 000 3.0& 10712
= 0.067 40 412 50000 0.093 1.45 10720
S 80 4.12 40 000 3.9% 10*
3 0.04-
g aNumber of moves in the Markov/damped trajectory wélRo-
0.02 tential barrier height¢ Classical diffusion coefficients. Reference 29.
€ One sigma limit of statistical uncertainty in averaging over the lattice
0.00 T - T v vacancy sites.
0 1 2 3 4 5
Radial Distance (A) o ' ‘ T
. . . . . . ¢ -=-- Expt.-laBrake-Weitz
Figure 1. Potential energy barrier for hydrogen atom diffusion in a * Calaulated
Xe matrix with 1.37% vacant sites. The plotted points are the minimum 105t J
crossing potentials obtained in the Markov/damped trajectory walk of =
75 000 moves. The abscissa gives the radial diffusion distance covered. & 4
107 ¢ E
0.1 E
Eb=0.093 eV
Q@ 103t E
- S Xe(10K) at 40K
s A2\ T
o %2l ]
- S L
E Xe(28K) at 40K
S 0.0] 10th ]
c
e > ]
3 L . . . ‘
o 0 1 2 3 4
Percent Vacancies
-0.1 T N ™ T Figure 3. Variation of the computed hydrogen atom diffusion
0 1 . 2_ 3 . 4 5 coefficient with percentage of vacant xenon sites at 40 K. The error
Radial Distance (A) bars represent one sigma limit of statistical uncertainty in averaging

over the vacancies sites. The horizontal dashed lines are the experi-

Figure 2. Potential energy barrier for hydrogen atom diffusion in & = enta| values reported by LaBrake and Weitz in ref 26 for the matrices
Xe matrix with 4.12% vacant sites. The plotted points are the minimum ,qicated in the figure.

crossing potentials obtained in the Markov/damped trajectory walk of

50 000 moves. The abscissa gives the radial diffusion distance covered.
g no vacancy case. When the vacancy percentage reaches 4.12%,

seen in the calculation of diffusion rates using classical the barrier shape shows a significant loss of symmetry. The
variational transition-state theory methd8&® Convergence of ~ €xample seen in Figure 2 illustrates this point. In this case, the
the diffusion rates for oxygen atoms in xenon matféegas dynamic t_>arr|e_r is reduced to 0_.093 eV, 0.0216 eV below that
achieved in 5x 10* steps with the Markov/damped trajectory for the Ia}ttlce with 1.37% vacancies. We see also that the barrier
procedure. In contrast, it was not possible to obtain convergencec'est shifts to about 1.2 A The fact that lattice vacancies lower
with 1CF steps by employing classical variational transition-state th€ dynamic barrier to diffusion indicates that such vacancies
methods with Markov moves alone. In the present calculations, Will have & profound influence on the hydrogen atom diffusion
convergence is obtained with 0.73.0 x 10° Markov/damped ~ "ates.
trajectory steps. Hydrogen atom diffusion rates are computed using eqs 1 and
Equation 6 predicts a significant potential barrier to the 13 with a Markov walk/damped trajectory procedure. The
diffusion of hydrogen atoms within the matrix cage. For the average hydrogen atom diffusion rates in Xe matrices with 1.37
case of a perfect fcc lattice with the atoms frozen in their and 4.12% vacancies are given in Table 2. In each case, the
equilibrium positions, the barrier for straight-line diffusion of ~results are obtained by averaging five different calculations each
hydrogen from one adsorption site to another is 2.855 eV. As With a different set of vacancy sites. At 40 K, the root-mean-
expected, the barrier crest occurs at a distafzérom the initial square deviation of the results from the mean corresponds to a
adsorption site. This barrier increaseseaand o in eq 23 statistical uncertainty o£18%. The hydrogen atom diffusion
increase. Obviously, no diffusion will occur at cryogenic rate in a lattice with 1.37% vacancies is a factor of 26.6 faster
temperatures with a barrier of this magnitude. However, when than that for the perfect fcc crystal, while the corresponding
the lattice is permitted to relax in the potential field of the diffusion barrier is 4.63% lower. The diffusion rate with 4.12%
hydrogen atom and the phonon modes of the lattice are allowedvacancies is several orders of magnitude faster than that in the
to contribute to the diffusion process, the barrier decreases toperfect crystal, and the diffusion barrier is lowered 0.028 eV
0.121 eV2? relative to the perfect fcc lattice. Because of the small mass of
In the present case, dynamic barriers have been determinedlydrogen, tunneling processes would be expected to make an
by recording the minimum system potential for each of the important contribution to diffusion at low temperatures. Perry
dividing slabs obtained from hydrogen-atom crossings observedet al?® found that, at temperatures approaching 12 K, diffusion
during the Markov/damped trajectory walk. Typical results are occurs almost exclusivelyia tunneling. At 40 K and above,
shown in Figures 1 and 2. Figure 1 shows a typical barrier for however, tunneling was found to be negligible.
a system with 1.37% vacancies, and Figure 2 shows the The decrease of the diffusion barrier with increasing vacancy
corresponding result for a lattice containing 4.12% vacancies. percentage suggests that the diffusion rate should vary expo-
With 1.37% vacancies, the relaxation of the lattice reduces the nentially with vacancy percentage. Figure 3 shows a semilog
energy barrier to 0.1146 eV, 0.0064 eV lower than that for the plot of the calculated hydrogen atom diffusion coefficients in a
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Figure 4. Typical lattice atom motion occurring during the first
200 000 Markov steps in the Monte Carlo calculation. At titve 0, 0 T T T . 4 s
site 382 is vacant. The diffusion of the vacancy as shown by the solid Radial Dist A
arrows produces a vacancy at site 77 so that the overall result is a adial Distance (A)
diffusion of the vacancy from site 382- site 539— site 47— site Figure 5. Example of the variation of the potential energy barrier for
545— site 77. hydrogen-atom diffusion in a Xe matrix with 1.37% vacant sites

subsequent to vacant site diffusion after 200 000 Markov/damped
xenon matrix as a function of the percentage of vacant sites in trajectory steps. The plotted points are the minimum crossing potentials
the lattice. The near linearity of this plot indicates that the ©Ptained in the Markov/damped trajectory walk. The abscissa gives
dependence is well described as exponential. A Ieast-squareg;he radial diffusion distance covered.
fit to the data yields As can be seen, five translations of this vacancy occur during
this period. These translations are induced by the hydrogen
D(T=40 K) = 0.145x 10 ®exp[1.381] cm%s (25) atom diffusion_ which causes th_e Iatti_ce to shift toward a more
thermodynamically stable configuration.

whereD and p are the diffusion coefficient and the vacancy The translation _Of Si.te vacancies can significantly affect the
hydrogen-atom diffusion rate since the process alters the

percentage, respectively. This exponential dependence will ) X o . : ; ;
obviously break down for increasingly large value pf potential barrier to diffusion. Figure 5 illustrates this point for
However, when the vacancy percentage is 5% or less, it appearj: Xg Iqttice with 1.3?% yacant sites. |Initially, the diffusion
to be accurate. This increase in diffusion rate is a consequence®@/Tier is that shown in Figure 1. After 200 000 Markov steps
of a general lattice expansion produced by the vacancies. Thehave been e_xt_e_cuted, the variation of t_he system potent_lal
between the initial and final absorption sites is that shown in

expanded lattice provides lower energy pathways for hydrogen ™ X ; e
atom diffusion to adjoining sites. This expansion mechanism Figure 5. Obviously, the barrier to diffusion has completely
is quite different from one that has the diffusion coefficient vanished. More detailed investigation demonstrates that this

increasing because of migration through large “holes” created d_rastic a_It_eration of dif_fusion barrier is the resul; of vacancy
by the site vacancies. site mopl!lty: Our studies show that the propensity for vacant
LaBrake and Wei# have measured hydrogen atom diffusion site mo.b|I|t.y increases as the total numper of vacancies increases.
coefficients in vapor-deposited xenon matrices at 40 K. They Qualitatively, it is clgar t_hat vacant site mobility will increase
used 193 nm photolysis of HBr to produce hydrogen atoms the hydrogeq atom diffusion rate since the process lowers the
whose concentration was monitored using laser-induced emis_dﬁusmn barrier. Slnce the canonical Markov walk and damped
sion from xenor-hydrogen exciplexes. When a xenon matrix trajectqry calcqlaﬂons are thermodypamma!ly based, we cannot
vapor deposited at 10 K, denoted Xe(10 K), was maintained at determlr_le the time scale forvgcant site mob_|I|ty from the present
10 K, the hydrogen-atom concentration remained unchangedC@culations. Consequently, it is not possible for us to quan-
over a 5 day period. Thus, the diffusion coefficient at 10 K in titatively determine the effect of such mobility on the hydrogen

Xe(10 K) is effectively zero. When the temperature of the Xe- atom diffusion rates in imperfect xenon crystals. For this reason,
(10 K) matrix is increased to 40 K, hydrogen diffusion is the diffusion coefficients listed in Table 2 should be regarded

observed with an estimated diffusion coefficient of % 8.0-13 as lower limits for a system whose potential is described by eq
cmP/s. In contrast, when a Xe(28 K) matrix is warmed to 40 6. For the same reason, the percentage of vacancies in the Xe-
K, a diffusion coefficient of 5.0x 10-14 cn?/s is obtained. (10 K) and Xe(28 K) experimental matricéspredicted from

LaBrake and Weif# suggested that this difference is due to Figure 3 and eq 25 are upper limits.
the presence of a larger number of imperfections in the lattice
deposited at 10 K which are not later annealed at 40 K. This
view implicitly assumes that the larger number of vacancies Using a pairwise Xe/H interaction potential obtained from
present in the Xe(10 K) lattice will lead to a larger hydrogen the results of MP4(SDTQ) calculations, thermal diffusion rates
atom diffusion coefficient. of hydrogen atoms in an imperfect face-centered-cubic xenon
The data given in Table 2 and in Figure 3 support the lattice containingn vacancies have been computed using
interpretation advanced by LaBrake and WéftzEquation 25 classical variational transition-state theory. Convergence of the
shows that the diffusion coefficient will indeed increase rapidly required integrals is achieved by combining importance sampling
with an increase in the number of vacant lattice sites. The and a damped trajectory procedure with the standard Markov
horizontal lines shown in Figure 3 are the measured diffusion walk. The variational flux through a spherical dividing surface
coefficient28 in Xe(10 K) and Xe(28 K) lattices. The intersec- is minimized as a function of radius of the dividing surface.
tion of these lines with the calculated curve indicates that there  The potential barriers to diffusion have been determined by
are 1.76 and 1.15% vacancies in the experimental Xe(10 K) recording the minimum system potential observed upon hydro-
and Xe(28 K) matrices, respectively. gen atom crossing on each of the dividing surfaces during the
It is important to note that the calculations show that the damped trajectory/Markov walk. Typical results show that the
vacancy sites are mobile. A typical example is shown in Figure presence of 1.4% vacant lattice sites lowers the diffusion barrier
4 for the case of a xenon lattice at 40 K containing 1.37% by about 0.006 eV relative to the perfect fcc crystal system.
vacancies. The figure illustrates the mobility of one of these = The computed values of the hydrogen atom diffusion coef-
vacancies, no. 382, during the initial 200 000 Markov steps. ficients at 40 K indicate that, over the range of vacancies

V. Summary
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considered, the diffusion coefficients increase exponentially with
(10) Dubs, M.; Ermanni, L.; Guthard, Hs. HJ. Mol. Spectroscl982

the percentage of lattice vacancies. Comparison of the predicte
diffusion rates with the experimental values reported by LaBrake
and WeitZ® in vapor-deposited xenon matrices suggests that
the Xe lattices deposited at 10 and 28 K have about 1.8 and
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The calculations show that the lattice vacancies are mobile. 1991, 95 2802.

This translation of site vacancies can significantly affect the
hydrogen atom diffusion rate since the process lowers the
Our studies show that the
propensity for vacant site mobility increases as the total number
of lattice vacancies increases. Although it is clear that vacant
site mobility will increase the hydrogen atom diffusion rate,

potential barrier to diffusion.

(15) Hauge, R. H.; Gransden, S.; Wang, J.; Margrave, J. Am. Chem.
Soc.1979 101, 6950.
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(20) Raff, L. M.J. Chem. Phys199Q 93, 3160.

(21) Agrawal, P. M.; Thompson, D. L.; Raff, L. M. Chem. Phys1994

the present calculations do not permit the magnitude of this 191 go37.
increase to be determined. This is a consequence of the fact (22) Agrawal, P. M.; Thompson, D. L.; Raff, L. M. Chem. Phys1995
that the canonical Markov walk and damped trajectory calcula- 102 7000.

tions are thermodynamically based. Therefore, we cannot ;o
determine the time scale for vacant site mobility from the present
calculations. For this reason, the diffusion coefficients reported
here are lower limits for a system whose potential is described

(23) Feld, J.; Kunttu, H.; Apkarian, V. AJ. Chem. Phys199Q 93,

(24) Lawrence, W. G.; Apkarian, V. Al. Chem. Physl1992 97, 6199.
(25) Krueger, H.; Weitz, EJ. Chem. Phys1992 96, 2846.

(26) LaBrake, D.; Weitz, EChem. Phys. Lett1993 211, 430.

(27) Misochko, E. Ya.; Benderskii, V.; Wight, C. Al. Phys. Chem

by eq 6. For the same reason, the vacancy percentage predictegggg 100 4496.

for the experimental Xe(10 K) and Xe(28 K) matrices are upper

(28) Ford, M. B. B.; Foxworthy, A. D.; Mains, G. J.; Raff, L. M.

limits for the potential surface used in the present calculations. Phys. Chem1993 97, 12134.

The calculated hydrogen atom diffusion coefficients in Xe

at 40 K vary from 2.15x 10715 cné/s for a perfect lattice to

1.45 x 10719 c?/s for a lattice containing 4.12% vacancies.

The statistical error present in these results is akiel8%.

However, lack of knowledge of the true system potential makes

the accuracy of the computed coefficients very uncertain.
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